
Usable Security for Developers: A Nightmare
Achim D. Brucker | @adbrucker



Usable Security for Developers: A Nightmare
;

Achim D. Brucker | @adbrucker

About Me
Security Expert/Architect at SAP SEMember of the central security team, SAP SE (Germany)

Security Testing Strategist
Work areas at SAP included:

Defining the risk-based Security Testing StrategyEvaluation of security testing tools (e.g., SAST, DAST)Roll-out of security testing toolsSecure Software Development Life Cycle integration. . .
Since December 2015:

Associate Professor, The University of Sheffield, UKHead of the Software Assurance & Security Research TeamAvailable as consultancy & (research) collaborations
https://www.brucker.ch/

https://www.brucker.ch/


Usable Security for Developers: A Nightmare
;

Achim D. Brucker | @adbrucker

Outline
1 Security experts and developers
2 Secure programming cant’ be that difficult . . .
3 The most common “fixes”
4 What we should do



Usable Security for Developers: A Nightmare
;

Achim D. Brucker | @adbrucker

70 years of software development
Since the late 1940ies, we

program,
debug, and
patch

computer systems.

we do not use punch cards anymore . . .



Usable Security for Developers: A Nightmare
;

Achim D. Brucker | @adbrucker

70 years of software development
Since the late 1940ies, we

program,

debug, and
patch

computer systems.

we do not use punch cards anymore . . .



Usable Security for Developers: A Nightmare
;

Achim D. Brucker | @adbrucker

70 years of software development
Since the late 1940ies, we

program,
debug, and

patch

computer systems.

we do not use punch cards anymore . . .



Usable Security for Developers: A Nightmare
;

Achim D. Brucker | @adbrucker

70 years of software development
Since the late 1940ies, we

program,
debug, and
patch

computer systems.

we do not use punch cards anymore . . .



Usable Security for Developers: A Nightmare
;

Achim D. Brucker | @adbrucker

70 years of software development
Since the late 1940ies, we

program,
debug, and
patch

computer systems.
we do not use punch cards anymore . . .



Usable Security for Developers: A Nightmare
;

Achim D. Brucker | @adbrucker

We build software since 70 years

and still make the same old (security) mistakes



Usable Security for Developers: A Nightmare
;

Achim D. Brucker | @adbrucker

We build software since 70 years
and still make the same old (security) mistakes



Usable Security for Developers: A Nightmare
;

Achim D. Brucker | @adbrucker



Usable Security for Developers: A Nightmare
;

Achim D. Brucker | @adbrucker

The common “silver bullet”: The SDLC
Training Risk

Identification
Plan Security

Measures
Secure Development

& Security Testing
Security 

Validation
Secure

Operations
Security

Response

Central security experts (SDLC owner)
Organizes security trainingsDefines product standard “Security”Defines security testing strategyValidates products. . .

Development teams
Select technologiesSelect development modelDesign and execute security testing plan. . .



Usable Security for Developers: A Nightmare
;

Achim D. Brucker | @adbrucker

Works nicely

in theory – let’s move to reality



Usable Security for Developers: A Nightmare
;

Achim D. Brucker | @adbrucker

Works nicely
in theory – let’s move to reality



Usable Security for Developers: A Nightmare
;

Achim D. Brucker | @adbrucker

Developer

Security Expert



Usable Security for Developers: A Nightmare
;

Achim D. Brucker | @adbrucker

Introducing the SDLC: View of the security experts

The whiteboard is from the Microsoft’s security team
I confess, I am guilty too:We also had a board with “embarrassing developers quotes”





SQL Injection:I would never enter this!



SQL Injection:I would never enter this!

Encryption:We XOR-encrypted it



SQL Injection:I would never enter this!

Encryption:We XOR-encrypted it

Injection:But that would be illegal!



SQL Injection:I would never enter this!

Encryption:We XOR-encrypted it

Injection:But that would be illegal!

XSS (as a feature):We can’t fix this, customers rely on it (sad but true)



Usable Security for Developers: A Nightmare
;

Achim D. Brucker | @adbrucker

Introducing the SDLC: View of the developers

Experience security as“The Department of No”
Confronted with a strange & complex language(there are over 1024 CWEs – and counting)



Usable Security for Developers: A Nightmare
;

Achim D. Brucker | @adbrucker

Example of unfriendly APIs: Buffer overflow
> man gets
GETS (3S) GETS (3S)

NAME
gets , fgets - get a string from a stream

SYNOPSIS
# include <stdio .h>

char *gets(s)
char *s;

DESCRIPTION
Gets reads a string into s from the standard input
stream stdin . The string is terminated by a newline
character , which is replaced in s by a null character .
Gets returns its argument .

Let’s travel back in time
Unix V7 (1979)
Reading strings
Gets returns a stringof arbitrary length

Is there a secure use ofgets?



Usable Security for Developers: A Nightmare
;

Achim D. Brucker | @adbrucker

Example of unfriendly APIs: Buffer overflow
Wait, let’s check the man page on a modern Unix/Linux:
NAME

gets - get a string from standard input ( DEPRECATED )

BUGS
Never use gets (). Because it is impossible to tell without knowing the
data in advance how many characters gets () will read , and because
gets () will c ontinue to store characters past the end of the buffer ,
it is extremely dangerous to use. It has been used to br eak computer
security . Use fgets () instead .



Usable Security for Developers: A Nightmare
;

Achim D. Brucker | @adbrucker

Example of unfriendly APIs: Buffer overflow
OK, that’s sounds easy:

Use fgets(buf, n, stdin) instead of gets(buf):

void f() {
char buf [20];
gets(buf);

}

Is this now secure?we need to manually null terminate the buffer (and reserve space for the null character)
void f() {

char buf [21];
fgets (buf ,20 , stdin );
buf [20]= ’\0 ’;

}

C-Programming has a lot in comming with (insurance) contracts: allways read the small print



Usable Security for Developers: A Nightmare
;

Achim D. Brucker | @adbrucker

Example of unfriendly APIs: Buffer overflow
OK, that’s sounds easy: Use fgets(buf, n, stdin) instead of gets(buf):
void f() {

char buf [20];
fgets(buf,20,stdin) // NOT: gets(buf);

}

Is this now secure?we need to manually null terminate the buffer (and reserve space for the null character)
void f() {

char buf [21];
fgets (buf ,20 , stdin );
buf [20]= ’\0 ’;

}

C-Programming has a lot in comming with (insurance) contracts: allways read the small print



Usable Security for Developers: A Nightmare
;

Achim D. Brucker | @adbrucker

Example of unfriendly APIs: Buffer overflow
OK, that’s sounds easy: Use fgets(buf, n, stdin) instead of gets(buf):
void f() {

char buf [20];
fgets(buf,20,stdin) // NOT: gets(buf);

}

Is this now secure?

we need to manually null terminate the buffer (and reserve space for the null character)
void f() {

char buf [21];
fgets (buf ,20 , stdin );
buf [20]= ’\0 ’;

}

C-Programming has a lot in comming with (insurance) contracts: allways read the small print



Usable Security for Developers: A Nightmare
;

Achim D. Brucker | @adbrucker

Example of unfriendly APIs: Buffer overflow
OK, that’s sounds easy: Use fgets(buf, n, stdin) instead of gets(buf):
void f() {

char buf [20];
fgets(buf,20,stdin) // NOT: gets(buf);

}

Is this now secure? No, fgets does not always null-terminate

we need to manually null terminate the buffer (and reserve space for the null character)
void f() {

char buf [21];
fgets (buf ,20 , stdin );
buf [20]= ’\0 ’;

}

C-Programming has a lot in comming with (insurance) contracts: allways read the small print



Usable Security for Developers: A Nightmare
;

Achim D. Brucker | @adbrucker

Example of unfriendly APIs: Buffer overflow
OK, that’s sounds easy: Use fgets(buf, n, stdin) instead of gets(buf):
void f() {

char buf [20];
fgets(buf,20,stdin) // NOT: gets(buf);

}

Is this now secure? No, fgets does not always null-terminatewe need to manually null terminate the buffer (and reserve space for the null character)
void f() {

char buf [21];
fgets (buf ,20 , stdin );
buf [20]= ’\0 ’;

}

C-Programming has a lot in comming with (insurance) contracts: allways read the small print



Usable Security for Developers: A Nightmare
;

Achim D. Brucker | @adbrucker

Example of unfriendly APIs: Error handling
“ “Most OpenSSL functions will return an integer to indicate success or failure. Typically a function will

return 1 on success or 0 on error. All return codes should be checked and handled as appropriate.Note that not all of the libcrypto functions return 0 for error and 1 for success. There are exceptionswhich can trip up the unwary. For example if you want to check a signature with some functions you
get 1 if the signature is correct, 0 if it is not correct and -1 if something bad happened like a memoryallocation failure.” (OpenSSL)

Recall the common C convention:
0 indicates successany non-zero value indicates failure



Usable Security for Developers: A Nightmare
;

Achim D. Brucker | @adbrucker

Example of unfriendly APIs: Error handling
Which one is correct:

1 Consider
if ( some_verify_function ())

/* signature successful *?

2 Consider
if ( 1 != some_verify_function ())

/* signature successful *?

The last one is correct



Usable Security for Developers: A Nightmare
;

Achim D. Brucker | @adbrucker

Example of unfriendly APIs: Error handling
Which one is correct:

1 Consider
if ( some_verify_function ())

/* signature successful *?

2 Consider
if ( 1 != some_verify_function ())

/* signature successful *?

The last one is correct



Usable Security for Developers: A Nightmare
;

Achim D. Brucker | @adbrucker

Example of unfriendly APIs: The Java 8 Crypto API
Just a nightmare:

Many configurations to choose from
algorithmmode of operationpadding schemeright keys and sizes. . .

Most ciphers are oudated/broken. Only two can still be recommended
AES (symmetric)RSA (asymmetric)

Many providers use insecure defaults (e.g., ECB mode)
Using the Java crypto API, is already hard for somebody who understands crypto . . .



Usable Security for Developers: A Nightmare
;

Achim D. Brucker | @adbrucker

Example of unfriendly APIs: XSS (Java)
Most Web Frameworks for Java do not provide input/output encoding as default
Developers need to include third party encoding libraries(e.g., OWASP Java Encoder: https://github.com/OWASP/owasp-java-encoder)
and add calls to the encoder manually:

PrintWriter out = ....;
out. println ("<textarea >"+ Encode . forHtml ( userData )+" </textarea >");

You need to insert the right (there are many) encoder each time.

https://github.com/OWASP/owasp-java-encoder


Usable Security for Developers: A Nightmare
;

Achim D. Brucker | @adbrucker

Common mitigations
Provide training

Do we really expect that our developers understandall these details?
Write (coding) guidelines

Guidelines without tool support are(mostly) worthless
Use generic application security testing tools

without configuration, these tools are prone to bothhigh false-positive rates and high false-negative ratesmany tools are developed for security experts(and not for developers)penetration tests
In their generality, these actions are often not very effective!



Usable Security for Developers: A Nightmare
;

Achim D. Brucker | @adbrucker

Security experts and developers need to work together to achieve thecommon goal: securesoftware!(Disclaimer: security experts might need to learn how to code)!
Think positive: security enables developers to produce high-quality and secure software!

Start early in the development:
Select frameworks and/or programming languages that are secure by designDevelop custom APIs-Wrappers that are easy to use and require only little security knowledgeTo consider

Configure your DAST/IAST/SAST tool to support your custom APIsIn the fix recommendations of your DAST/IAST/SAST tool, point developers to the recommended frameworksIf you develop APIs, make your examples secure by default



Usable Security for Developers: A Nightmare
;

Achim D. Brucker | @adbrucker

If you do not support yourdevelopers, they will seek for helpelsewhere!



Usable Security for Developers: A Nightmare
;

Achim D. Brucker | @adbrucker

Let’s close with a good example: Modern Rails
Modern versions of Rails are pretty secure by default
Input/output encoding is enabled by default and, in exceptional cases, needs to be disabled explicitly:

<%= account . balance . html_safe % >

(one can argue, if html_safe is a good name denoting un-sanitized (trusted) channels)
Suddenly, a simple grep becomes a powerful static analysis tool



Usable Security for Developers: A Nightmare
;

Achim D. Brucker | @adbrucker

Call for action

Let’s build framework and APIs are easy to use securely!



Usable Security for Developers: A Nightmare
;

Achim D. Brucker | @adbrucker

Call for actionLet’s build framework and APIs are easy to use securely!



Usable Security for Developers: A Nightmare
;

Achim D. Brucker | @adbrucker

Call for actionLet’s build framework and APIs are easy to use securely!



Usable Security for Developers: A Nightmare
;

Achim D. Brucker | @adbrucker

Call for actionLet’s build framework and APIs are easy to use securely!



Usable Security for Developers: A Nightmare
;

Achim D. Brucker | @adbrucker

Call for actionLet’s build framework and APIs are easy to use securely!



Usable Security for Developers: A Nightmare
;

Achim D. Brucker | @adbrucker

Thank you for your attention!Any questions or remarks?

Contact: Dr. Achim D. BruckerDepartment of Computer ScienceUniversity of SheffieldRegent Court211 Portobello St.Sheffield S1 4DP, UK

� a.brucker@sheffield.ac.uk
8@adbrucker
° https://de.linkedin.com/in/adbrucker/
� https://www.brucker.ch/
� https://logicalhacking.com/blog/

mailto:a.brucker@sheffield.ac.uk
https://twitter.com/in/adbrucker/
https://de.linkedin.com/in/adbrucker/
https://www.brucker.ch/
https://logicalhacking.com/blog/
https://logicalhacking.com


Usable Security for Developers: A Nightmare
;

Achim D. Brucker | @adbrucker

Document Classification and License Information

© 2018 LogicalHacking.com, Achim D. Brucker | @adbrucker.
This presentation is classified as Public (CC BY-NC-ND 4.0):Except where otherwise noted, this presentation is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives4.0 International Public License (CC BY-NC-ND 4.0).

https://logicalhacking.com
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/

	Security experts and developers
	The side of the security experts
	The side of the developers

	Secure programming cant' be that difficult …
	The most common ``fixes''
	What we should do

