Usable Security for Developers: A Nightmare

AppSec

London 2nd-6th July 2018

{* Logical)ilacking *}com

Usable Security for Developers: A Nightmare

Appsec Europe Achim D. Brucker | @adbrucker

London 2nd-6th July 2018

| e

About Me

- Security Expert/Architect at SAP SE
= Member of the central security team, SAP SE (Germany)
Security Testing Strategist
= Work areas at SAP included:
Defining the risk-based Security Testing Strategy
Evaluation of security testing tools (e.g., SAST, DAST)

Roll-out of security testing tools
Secure Software Development Life Cycle integration

= Since December 2015:

= Associate Professor, The University of Sheffield, UK
= Head of the Software Assurance & Security Research Team
= Available as consultancy & (research) collaborations

\ IS HITA
https://www.brucker.ch/

https://www.brucker.ch/

Usable Security for Developers: A Nightmare

London 2nd-6th July 2018

OwRsP
Appsec Europe Achim D. Brucker | @adbrucker

| e

Outline

Security experts and developers
Secure programming cant’ be that difficult ...
The most common “fixes”

What we should do

Usable Security for Developers: A Nightmare

OwARsP
AppSec Europe
Lon

don 2nd-6th July 2018

| e

Since the late 1940ies, we

computer systems.

Usable Security for Developers: A Nightmare

OwARsP
AppSec Europe
Lon

don 2nd-6th July 2018

| e

Since the late 1940ies, we

= program,

computer systems.

Usable Security for Developers: A Nightmare

Appsec Europe Achim D. Brucker | @adbrucker

London 2nd-6th July 2018

s

70 years of software development

ia
;;:) Onclod j&wk_,l S gm—m z,,w o0 6 5i R .
100 % 095
S e e L ince the late 1940ies, we
e f,'f,f;;fﬁ,'hi—-j g ‘ = program,
Fdos e = 032 Lol sy
e = e A = debug, and

Iy oo,
1000 Started L Ggial T;AR:J(S{M <het)

Relow® o Pinc| F
gm:n?.‘“ i ne| computer systems.

'ﬁ.q ashal caseof bug being founds

sfe Usable Security for Developers: A Nightmare

=
OwARsP
AppSec Europe
2nd-6th July. 201

B

70 years of software development

Since the late 1940ies, we

= program,

- debug, and
- patch

computer systems.

Usable Security for Developers: A Nightmare

OwRsP
Appsec Europe Achim D. Brucker | @adbrucker

London 2nd-6th July 2018

P

70 years of software development

& Demo «| #: Demo

—— 1 [ousing Systen.15; . .
usini sttemASecumty.(rvutcgraphy; Since the late 1940les, we

using System.Text;

Spublic class Demo :. program,
‘ L
=" debug, and

public string checkMDS(string filename)
" patch

wcheckMD5(string
computer systems.

@ string filename)

ar hash = 105, Credke
using (var stream =
1 {

return Encoding.

n
" we do not use punch cards anymore ...

Usable Security for Developers: A Nightmare

OwARsP
AppSec Europe
Lon

don 2nd-6th July 2018

| e

We build software since 70 years

Usable Security for Developers: A Nightmare

OwARsP
AppSec Europe

nnnnnnnnn -6th July 2018

We build software since 70 years
and still make the same old (security) mistakes

Usable Security for Developers: A Nightmare

OwRsP
Appsec Europe Achim D. Brucker | @adbrucker

London 2nd-6th July 2018

| e

Vulnerabilties by type & year

Of Vulns

Years

M Denial of Service Il Execute Code M Overflow W xss

Usable Security for Developers: A Nightmare

OwRsP
Appsec Europe Achim D. Brucker | @adbrucker

London 2nd-6th July 2018

The common “silver bullet”: The SDLC

Trainin Risk Plan Security\ Secure Development Security Secure Security
9 Identification/ Measures & Security Testing Validation Operations Response

= Central security experts (SDLC owner) - Development teams

Organizes security trainings Select technologies

Defines product standard “Security” Select development model

Defines security testing strategy Design and execute security testing plan
Validates products

bl il
LU L G L

Usable Security for Developers: A Nightmare

OwARsP
AppSec Europe
Lon

don 2nd-6th July 2018

| e

Works nicely

Usable Security for Developers: A Nightmare

OwARsP
AppSec Europe

nnnnnnnnn -6th July 2018

Works nicely
in theory - let’s move to reality

Usable Security for Developers: A Nightmare

OWwAsSP
AppSec Europe
Londor 8

Usable Security for Developers: A Nightmare

OwARsP
AppSec Europe
London 2nd-6th July 2018

Introducing the SDLC: View of the security experts

= The whiteboard is from the Microsoft’s security team

= | confess, | am guilty too:
We also had a board with “embarrassing developers quotes”

S Bt s
¥ S o A L
. i : /] s
D“‘! . n"‘.f,‘ (] iy -
el | wedih hn — ‘fv...ii
» & rq Bxcop ¥ o
'ﬁ‘ P L &ZA‘TCM" T
- VO _ cro as | e i 2

m £ %J Dslgl' Cax iy |

cre? |UNDISIANMD . Fsakion i
LT T e e e v Ry '
DS | M f.':l»’r.v'f ¥ Q“W | fie 3!; j

Cavw' 4 ower!
he € 5 oacwable \L‘_.nm.sc 6A>/
m‘z‘ (Ll -1 7| ondet
wL; 15 UNSr e e
J i el (R A

""" AVs HOGCu + bub Soucon. wovld
oy ber wsidotd Lugd st Aled 0| wwe 42 y
e o Wt
e T A Sl L SR ol L e,
H Aoy ‘égl“{ll_ 1l r"'ﬁoco‘_ 6“* f wsl & whe
—]

Scary | ai| Colhs o] .:obh I lgsaN [
'!'l..l. lefoh"j P(rG) owly g4 i
s Blsismc' | - Iocal i A s 0 e[Sz =
s s B B, B R
— 3 [AVIEA -
fofee 1 - e o

SQL Injection:
| would never enter this!

SQL Injection:
| would never enter this!

Encryption:
We XOR-encrypted it

SQL Injection:
| would never enter this!

Encryption:
We XOR-encrypted it

Injection:
But that would be illegal!

SQL Injection:
| would never enter this!

Encryption:
We XOR-encrypted it

Injection:
But that would be illegal!

XSS (as a feature):
We can't fix this, customers rely on it (sad but true)

Usable Security for Developers: A Nightmare

OwRsP
Appsec Europe Achim D. Brucker | @adbrucker

London 2nd-6th July 2018

B

Introducing the SDLC: View of the developers

2 s 8 S5 nsp B 2 mEmEE

IR £ i R

Tidtm WBNR U dowemen

Immataly Elameny pinmpuRIs-Imism

Parevige: ABEIE Soetvsie YRS

355 TS VES Sace ZHVES ZEBUNES ey

Shispans, TEEAT pidoll gw

TR SRR o o : : .

%mg;'g’?éi‘?:ﬁ’s ggz:ﬁ SVESYEZ -:!f; «" Experience security as

o s R =3) : - = « »

i s;E"*'Em b5 The Department of No

LT : ;

R OIS !‘:“ss"éus-'-‘- YE Eegga ﬁ,sﬁ =" Confronted with a strange & complex language
m o P - .
% sésag ‘E‘% ﬁ%ﬁ (there are over 1024 CWEs - and counting)

7] YES B

VRIS VS SEE i
SN

EREEEE WeBuees

5B s B i s

pREAE LR ELHE

Usable Security for Developers: A Nightmare

Appsec Europe Achim D. Brucker | @adbrucker

London 2nd-6th July 2018

s

Example of unfriendly APIs: Buffer overflow

> man gets

GETS (35) GETS (3S)
NAME Let’s travel back in time
gets, fgets - get a string from a stream - .
* Unix V7 (1979)
SYNOPSIS

| |

.. . .
#include <stdio.h> =" Reading strings
L] .
" Gets returns a string

har *gets(s) i
char *gets(s of arbitrary length

char =*s;
DESCRIPTION Is there a secure use of
Gets reads a string into s from the standard input gets?

stream stdin. The string is terminated by a newline
character, which is replaced in s by a null character.
Gets returns its argument.

Usable Security for Developers: A Nightmare

Appsec Europe Achim D. Brucker | @adbrucker

London 2nd-6th July 2018

s

Example of unfriendly APIs: Buffer overflow

= Wait, let’s check the man page on a modern Unix/Linux:

NAME
gets - get a string from standard input (DEPRECATED)

BUGS

Never use gets(). Because it is impossible to tell without knowing the
data in advance how many characters gets() will read, and because
gets () will continue to store characters past the end of the buffer,
it is extremely dangerous to use. It has been used to break computer
security. Use fgets() instead.

Usable Security for Developers: A Nightmare

OwARsP
AppSec Europe
Lon

don 2nd-6th July 2018

| e

Example of unfriendly APIs: Buffer overflow

- OK, that’s sounds easy:

void £() {
char buf [20];
gets(buf) ;

}

Usable Security for Developers: A Nightmare

OwARsP
AppSec Europe
Lon

don 2nd-6th July 2018

| e

Example of unfriendly APIs: Buffer overflow

- OK, that’s sounds easy: Use fgets(buf, n, stdin) instead of gets (buf):

void £() {

char buf [20];

fgets(buf,20,stdin) // NOT: gets(buf);
}

Usable Security for Developers: A Nightmare

OwARsP
AppSec Europe
Lon

don 2nd-6th July 2018

| e

Example of unfriendly APIs: Buffer overflow

- OK, that’s sounds easy: Use fgets(buf, n, stdin) instead of gets (buf):

void £() {

char buf [20];

fgets(buf,20,stdin) // NOT: gets(buf);
}

L} .
=" Is this now secure?

Usable Security for Developers: A Nightmare

OwARsP
AppSec Europe

London 2nd-6th July 2018

| e

Example of unfriendly APIs: Buffer overflow

«* OK, that’s sounds easy: Use fgets (buf, n, stdin) instead of gets (buf):
void £() {

char buf [20];

fgets(buf,20,stdin) // NOT: gets(buf);

}

=" Is this now secure? No, fgets does not always null-terminate

Usable Security for Developers: A Nightmare

Appsec Europe Achim D. Brucker | @adbrucker

London 2nd-6th July 2018

s

Example of unfriendly APIs: Buffer overflow

- OK, that’s sounds easy: Use fgets(buf, n, stdin) instead of gets (buf):

void £() {

char buf [20];

fgets(buf,20,stdin) // NOT: gets(buf);
}

" Is this now secure? No, fgets does not always null-terminate
" we need to manually null terminate the buffer (and reserve space for the null character)

void £() {
char buf [21];
fgets (buf ,20,stdin);
buf [20]=>\0";
}

=" C-Programming has a lot in comming with (insurance) contracts: allways read the small print

e Usable Security for Developers: A Nightmare

OwRsP
Appsec Europe Achim D. Brucker | @adbrucker

London 2nd-6th July 2018

Example of unfriendly APIs: Error handling

“Most OpenSSL functions will return an integer to indicate success or failure. Typically a function will
return 1 on success or 0 on error. All return codes should be checked and handled as appropriate.
Note that not all of the libcrypto functions return o for error and 1 for success. There are exceptions
which can trip up the unwary. For example if you want to check a signature with some functions you
get 1if the signature is correct, o if it is not correct and -1 if something bad happened like a memory
allocation failure.” (OpensSSL)

n .
=" Recall the common C convention:

= oindicates success
= any non-zero value indicates failure

Usable Security for Developers: A Nightmare

fil,
4 AppSec Europe
London 2nd-6th July 2018

s

Example of unfriendly APIs: Error handling

= Which one is correct:
Consider

if (some_verify_function())
/* signature successful *7?

Consider

if (1 '= some_verify_function())
/% signature successful *?

Usable Security for Developers: A Nightmare

OwARsP
AppSec Europe
Lon

don 2nd-6th July 2018

s

Example of unfriendly APIs: Error handling

= Which one is correct:
Consider

if (some_verify_function())
/* signature successful *7?

Consider

if (1 '= some_verify_function())
/% signature successful *?

| | .
=" The last one is correct

Usable Security for Developers: A Nightmare

Appsec Europe Achim D. Brucker | @adbrucker

London 2nd-6th July 2018

| e

Example of unfriendly APIs: The Java 8 Crypto API

Just a nightmare:

- Many configurations to choose from
= algorithm
= mode of operation
= padding scheme
= right keys and sizes
=

= Most ciphers are oudated/broken. Only two can still be recommended
= AES (symmetric)
= RSA (asymmetric)

- Many providers use insecure defaults (e.g., ECB mode)

Using the Java crypto API, is already hard for somebody who understands crypto ...

Usable Security for Developers: A Nightmare

Appsec Europe Achim D. Brucker | @adbrucker

London 2nd-6th July 2018

s

Example of unfriendly APIs: XSS (Java)

" Most Web Frameworks for Java do not provide input/output encoding as default

" Developers need to include third party encoding libraries
(e.g., OWASP Java Encoder: https://github.com/OWASP/owasp-java-encoder)

=" and add calls to the encoder manually:

PrintWriter out =;
out.println("<textarea>"+Encode.forHtml (userData)+"</textarea>");

" You need to insert the right (there are many) encoder each time.

https://github.com/OWASP/owasp-java-encoder

i Usable Security for Developers: A Nightmare

OwRsP

AppSec Europe

London 2nd-6th July 2018

i

Common mitigations e

= Provide training

= Do we really expect that our developers understand
all these details?

= Write (coding) guidelines

= Guidelines without tool support are
(mostly) worthless ,

= Use generic application security testing tools
= without configuration, these tools are prone to both
high false-positive rates and high false-negative rates
= many tools are developed for security experts
(and not for developers) ——————

= penetration tests e

In their generality, these actions are often not very effective!

Usable Security for Developers: A Nightmare

OwRsP
Appsec Europe Achim D. Brucker | @adbrucker

London 2nd-6th July 2018

ey

Security experts and developers need to work together to achieve thecommon goal: secure
software!
(Disclaimer: security experts might need to learn how to code)!

Think positive: security enables developers to produce high-quality and secure software!

= Start early in the development:

= Select frameworks and/or programming languages that are secure by design

= Develop custom APIs-Wrappers that are easy to use and require only little security knowledge

= To consider
Configure your DAST/IAST/SAST tool to support your custom APIs
In the fix recommendations of your DAST/IAST/SAST tool, point developers to the recommended frameworks
If you develop APIs, make your examples secure by default

Usable Security for Developers: A Nightmare

OwARsP
AppSec Europe
2nd-6th July.20:

If you do not support your
developers, they will seek for help
elsewhere!

Copying and Pastlng
from Stack Overflow

The Practical Developer

O'REILLY @ThePracticalDev

Usable Security for Developers: A Nightmare

Appsec Europe Achim D. Brucker | @adbrucker

London 2nd-6th July 2018

s

Let’s close with a good example: Modern Rails

= Modern versions of Rails are pretty secure by default
n

" Input/output encoding is enabled by default and, in exceptional cases, needs to be disabled explicitly:

<%= account.balance.html_safe 7 >

(one can argue, if html_safe is a good name denoting un-sanitized (trusted) channels)

- Suddenly, a simple grep becomes a powerful static analysis tool

A Usable Security for Developers: A Nightmare

=
b) OwAsP
4 AppSec Europe
nnnnnnnnn -6th July 2018

s

Call for action

Let’s build framework and APIs are easy to use securely!

Usable Security for Developers: A Nightmare

OwARsP
AppSec Europe
Lo

ndon 2nd-6th July 2018

A

Sl Usable Security for Developers: A Nightmare

b) OwAsP
4 AppSec Europe
London 2nd-6th July 2018

s

Call for action
Let’s build framework and APIs are easy to use securely!

Usable Security for Developers: A Nightmare

Call for action
Let’s build framework and APIs are easy to use securely!

=pbe Usable Security for Developers: A Nightmare

OwARsP
AppSec Europe
London 2nd-6th July 2018

B

Call for action
Let’s build framework and APIs are easy to use securely!

Usable Security for Developers: A Nightmare

OwRsP
Appsec Europe Achim D. Brucker | @adbrucker

London 2nd-6th July 2018

Thank you for your attention!
Any questions or remarks?

Contact: Dr. Achim D. Brucker B a.brucker@sheffield.ac.uk
Department of Computer Science B @adbrucker

University of Sheffield @ https://de.linkedin.com/in/adbrucker/
Regent Court https://www.brucker.ch/
211 Portobello St. https://logicalhacking.com/blog/
Sheffield $1 4DP, UK

mailto:a.brucker@sheffield.ac.uk
https://twitter.com/in/adbrucker/
https://de.linkedin.com/in/adbrucker/
https://www.brucker.ch/
https://logicalhacking.com/blog/
https://logicalhacking.com

Usable Security for Developers: A Nightmare

OwRsP
Appsec Europe Achim D. Brucker | @adbrucker

London 2nd-6th July 2018

| e

Document Classification and License Information

© 2018 LogicalHacking.com, Achim D. Brucker | @adbrucker.

n

=" This presentation is classified as Public (CC BY-NC-ND 4.0):
Except where otherwise noted, this presentation is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives
4.0 International Public License (CC BY-NC-ND 4.0).

https://logicalhacking.com
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/

	Security experts and developers
	The side of the security experts
	The side of the developers

	Secure programming cant' be that difficult …
	The most common ``fixes''
	What we should do

