TIeS

Vulnerabl

=S

ey

O,
O)
(O
X
@)
q
[
O,
20)
O
Z
=
V)
-
O,
)
1
(O
(1

London 2nd-6th July 2018

OWARSP
§ AppSec Europe

) London 2nd-6thJuly 2018

JSON.stringify(me);

{
“Principal Software Engineer”. “Depository Trust & Clearing Corporation (DTCC)”,

“Project Leader”: "OWASP NodeGoat Project’,
“Author”; []

OREILLY

Patternsin
Node Package
Vulnerabilities

OREILLY"

Securing Node
Applications

AL

L

\

) OUWASP
¥ AppSec Europe

N8 London 2nd-6th July 2018

532 packages/day

) OUWASP
¥ AppSec Europe

N8 London 2nd-6th July 2018

~ /00,000 packages

=) OWASP

L AppSec Europe

nnnnnnnnn -6thJuly 2018

liackerone

88 Disclosures

OWASP
AppSec Europe

[
A London 2nd-6th July 2018

003 Vulnerabilities

OWASP
AppSec Europe

London 2nd-6th July 2018

1098 Advisories

OWASP

, "1 AppSec Europe

London 2nd-6th July 2018

S |

800

700

600

500

400

300

200

100

Security vulnerabillities discovered in Node packages

2014

2015

2016

2017

OWASP
AppSec Europe

London 2nd-6th July 2018

|

Growth of Node packages on npm vs. rate of discovering security vuinerabilities

B Number of Node packages on npm § | Vulnerabilities discovered
600000

500000

400000

300000

200000

100000

2013 2014 2015 2016 2017

OWASP
AppSec Europe

London 2nd-6th July 2018

Growth of Node packages on npm vs. rate of discovering security vuinerabilities

B Number of Node packages on npm Vulnerabilities discovered

600000

500000

400000

300000

200000

100000

: e
2013 2014 2015 2016 2017

OwAsP
AppSec Europe

_London 2nd-6

OWASP
AppSec Europe

London 2nd-6th July 2018

AL
f OWARSP
AppSec Europe

Lpndonan-G'tlf}_utigZO‘is S s

=== npm audit security report ===

pm install chokidar®2.0.3 EEZcEEa-T-ToNAVI N BRVITE Nl S o]kl kR 4Y;

IARNING: Recommended action is a potentially breaking change
I

- npm audit

lency of chokidar

chokidar > fsevents > node—pre—gyp > rc > deep—extend

snyk test

High severity wvulnerability found on minimatch@e.3.e

desc: Regular Expression Denial of Service

info: https://snyk.io/vuln/npm:minimatch:20160620

from: ionic@2.1.17 > gulp@3.8.8 > liftoff@e.12.1 > findup-sync@@.1.3 > glob@3.2.11 > minimatch@©.3.©
Upgrade direct dependency gulp@3.8.8 to gulp@3.8.11 (triggers upgrades to liftoff@2.2.8 > findup-sync@e.

https://nodesecurity.io/ad\

Medium severity vulnerabi
desc: Regular Expression
info: https://snyk.io/vul
from: ionic@2.1.17 > mome
Upgrade direct dependency moment@2.11.1 to moment@2.15.2

Medium severity vulnerability found on send@e.106.1
desc: Root Path Disclosure
info: https://snyk.io/vuln/npm:send:201511683
from: ionic@2.1.17 > serve-static@l.7.1 > send@©.10.1
Upgrade direct dependency serve-static@l.7.1 to serve-static@l1.8.1 (triggers upgrades to send@©6.11.1)

b) owAsP
AppSec Europe

London 2nd-6thJuly 2018

By seeking and blundering
we learn.

- Johann Wolfgang von Goethe

OWARSP
§ AppSec Europe

¥ London 2nd-6thluly 2018

OREILLY

Patternsin
Node Package
Vulnerabilities

Chetan Karande

OWASP
§ AppSec Europe
London 2nd-6th July 2018

OREILLY

Patternsin
Node Package
Vulnerabilities

1,023 Unique Advisories

28% . Insecure Access to File System
21% ‘ Sensitive Data Exposure
15% . Denial of Service
13% ‘ Cross Site Scripting (XSS)
10% . Injection Attack
5% . Malicious Attack
2% . Logic Issues
2% . Broken Access Control
1% & Security Misconfiguration
1% & Cross Site Request Forgery (CSRF)
1% & Open Redirection
0.50% JSONP Vulnerability
0.25% Clickjacking

0.25% Ensecure Version of Embedded Dependecies

> 28%

21%

15%

13%

10%
5%
2%
2%
1%
1%
1%

0.50%

0.25%
0.25%

Insecure Access to File System

Sensitive Data Exposure

Denial of Service

Cross Site Scripting (XSS)

Injection Attack

Malicious Attack

Logic Issues

Broken Access Control
Security Misconfiguration

Cross Site Request Forgery (CSRF)

Open Redirection

JSONP Vulnerability

Clickjacking

Ensecure Version of Embedded Dependecies

Insecure Access to File System

Pattern # 1 Directory Traversal

npmjs.com

Follow npmjs _ tumblr.

The npm Blog

Blog about npm things.

Newly Paranoid Maintainers
The Big Bug

The bug found by Charlie Somerville is a classic “static file leakage” bug: the code that runs the npm
website served static files through a module called st. It was possible, through a carefully encoded URL,
to get st to serve any file it could see, not just the ones in the static content directory, and you could also
list the contents of directories, so it was very easy to go looking for sensitive files.

The files that could have been potentially accessed included a ton of sensitive information: SSL keys,
database passwords with read/write access to our production databases, basically everything you never
want a third party to see. Somebody with access to the database could replace npm modules with
malicious payloads. | don’t want to blur the truth here: this could have been a disaster. It is of very

npmjs.com

_ Follow npmjs __ tumblr.

The npm Blog

Blog about npm things.

Newly Paranoid Maintainers

Caused by an insecure dependency vulnerable to Directory Traversal

list the contents of directories, so it was very easy to go looking for sensitive files.

The files that could have been potentially accessed included a ton of sensitive information: SSL keys,
database passwords with read/write access to our production databases, basically everything you never
want a third party to see. Somebody with access to the database could replace npm modules with
malicious payloads. | don’t want to blur the truth here: this could have been a disaster. It is of very

Directory Traversal

=) OWASP

e Common Coding Mistakes

Missing or insufficient user input validation for path
traversal characters before using it in a URL to serve
contents on the server.

Missing or insufficient user input validation for path
traversal characters before using it in a URL to serve
contents on the server.

o /

../

*%2f
*%2e%2¢e/
*%2€%2e%2f

" — Directory Traversal
P s CommorrCostng-Miskakes

TR o e s

const http = require('http');

const fs = require('fs’');

const path = require('path');
http.createServer(function (req, res) {

let userInput = req.url;

oo~V HWN -

let FullPath (path ﬁLu(__dlrname, ﬁubiig;; userInput));|

fs.readFile(fullPath, function (err, data) {==}):
}).listen(8080);

Directory Traversal

) OWASP

P i Mitigations

v If the path needs to be supplied from the user input,
sanitize the input to remove path traversal characters
(./ and ../ as well as encoded variations)

Insecure Access to File System

Pattern # 2 Symlink Attack /Arbitrary File Writ

OWASP
AppSec Euro

.ondon 2nd-6

Application sharing the
host server with external users

OWASP

London 2nd-6th July

Application sharing the
host server with external users

hared P
folders

- ‘w — Sym Nk Attack

§ AppSec Europe

nnnnnnnnn -6thJuly 2018

A malicious user sharing the host, could exploit this
vulnerabillity to:

&0 Symlink Attack

bl AppSec Europe
1 London 2nd-6th July 2018

A malicious user sharing the host, could exploit this
vulnerabillity to:

Corrupt or destroy vital system or application files to
which only the target application has the access.

o P Symlink Attack

P e Common Coding Mistakes

Using predictable file or folder names when writing to
shared directories on a host server shared with external
users.

Arbitrary File Write Vulnerable: <100

Patched: >=1.0.0

Module: cli

Published: June 15th, 2016 | Cvss
Reported by: Steve Kemp 1.9
CVE-NON Low

Example: The package writing logs to the shared /tmp directory with a

predictable file name

Jverview

Affected versions of cli use predictable temporary file names. If an attacker can create a symbolic link at the

location of one of these temporarly file names, the attacker can arbitrarily write to any file that the user which owns
the cli process has permission to write to.

> In —s <source file> <target file>

Symlink Attack

¥) OWASP

v/ Avoid using shared system folders.

Symlink Attack

OWASP

B = Mitigations

v/ Avoid using shared system folders.

v If you have to use a shared folder for writing
non-sensitive data, use crypto module’s randomBYytes
method to generate random filenames.

28%

> 21%

15%

13%

10%
5%
2%
2%
1%
1%
1%

0.50%

0.25%
0.25%

Insecure Access to File System

Sensitive Data Exposure

Denial of Service

Cross Site Scripting (XSS)

Injection Attack

Malicious Attack

Logic Issues

Broken Access Control
Security Misconfiguration

Cross Site Request Forgery (CSRF)

Open Redirection

JSONP Vulnerability

Clickjacking

Ensecure Version of Embedded Dependecies

=) OUASP
AppSec Europe

London 2nd-6th July 2018

The more you leave out,
the more you highlight

what you leave in.

- Henry Green

3 vt e o : : 4 S " : Iy g o : & 5 L8 i 35 G5, s - -
S G i ; T s e P el SR A s o L ; PRy T e ¥ s
L bl i L ik, i N P ¥ 2 - T . i Lo R ol oA T o ¥ T T > AN 9 ¢ s .
= l'_' }__, x & P s g = JE " < d - . iR - oW e s Wl AR i by k!

Sensitive Data Exposure

Pattern # 3 Leaking Application Secre

Leaking Application Secrets

=) OWASP

e Common Coding Mistakes

Application-specific secrets appearing at insecure places
such as as:

*code repositories,

*log files,

*client-side storage,

*URLsS,

«application global namespace

Test Vulnerability DB Docs Blog Features

Vulnerability DB > [npm

@ Man-in-the-Middle (MitM)

Affecting hotel package, ALL versions

Example: Leaking the SSL private key in the code repository

DLE e Jial Uu c J CVEI YU e - Ul VC \J \J

Middle (MitM) attacks. Hotel contained a self-signed certificate built-in, the private key being in the
repo. This allows any user to use that key and listen in on the traffic.

Remediation

Test Vulnerability DB Docs Blog Features

Vulnerability DB > [@ npm

Q Credentials saved as clear-text in log

Affecting

h-pages package, versions <=0.9.1

Zrunt-¢

The tokn can be compromised if the logs becomepublicly available.

Remediation

Upgrade to version 1.0.0 or greater and consider revoking previously used credentials with the module.

- -~

Test Vulnerability DB Docs Blog Features

Vulnerability DB > @ npm

@ Information Disclosure
Affecting ghost package, versions <0.5.9

Example: OAuth Bearer Token appearing in the browser local-storage

leakage, due to storing it in the localStorage of the browser. If used alongside a Cross-site Scripting
(XSS) attack, a malicious user may hijack the user session.

Remediation

Upgrade ghost to version 0.5.9 or higher.

Leaking Application Secrets

=) OWASP

Bt S S ol gat i@

v/ Securely store applications secrets in Hardware
Security Module (HSM) or Key Management Services.

Leaking Application Secrets

) OWASP

R oo ones AT gat i@

v/ Securely store applications secrets in Hardware
Security Module (HSM) or Key Management Services.

v Mask any sensitive data before it appears in the log
files.

Leaking Application Secrets

¥) OWASP

v/ Securely store applications secrets in Hardware
Security Module (HSM) or Key Management Services

v Mask any sensitive data before it appears in the log
files

v To reduce impact of a leak, use short-lived tokens.

Sensitive Data Exposure

Predictable Secrets

Sensitive Data Exposure

Predictable Secrets
Pattern # 4 Insecure Randomness

P ouwnsp INsecure Randommness

e - Common Coding Mistakes

* Using Math.random() method is to generate random values
in a security-sensitive context (random tokens, resource IDs,
or UUIDs).

* Math.random() is cryptographically insecure. It can produce
predictable values.

Insecure Entropy Source - Vunerable: <14.4

Patched: >=1.4.4
Math.random()
Module: node-uuid 4.2

Example: Using Math.random() to generate UUID

Overview

Affected versions of node-uuid consistently fall back to using Math.random as an entropy source instead of crypto,

Vulnerability DB > @ npm

@ Insecure Randomness

Alle NO SOCKE N NACKAOE 2 ala ’

Example: Using Math.random() to generate Socket IDs

SOCKeL. 10 a noaue. o 0 S 11TallIEWOITK sefvel. AllecLeq ve 0 ¢ C PaCKdge dle vulinerapie (o
Insecure Randomness due to the cryptographically insecure Math.random function which can produce
predictable values and should not be used in security-sensitive context.

Remediation

Upgrade socket.io to version 0.9.7 or higher.

v Use crypto module to generate random numbers
instead of Math.random()

INsecure Randommness
R gat ons

: ;;‘. -‘ it

1 const crypto = require('crypto');
2 crypto.randomBytes(256, (err, buf) => {==m});

- INsecure Randommness
P s Mitigations

. g,‘_ ,q i

const crypto = require('crypto’);

crypto.randomBytes(256, (err, buf) => {
1f (err) throw err;
// use the generated random value

})console.1og(‘${buf.length} bytes of random data: ${buf.toStrina('hex')});
’

Sensitive Data Exposure

Predictable Secrets

Pattern # 5 Non-constant Time Compariso

Using fail-fast comparison logic to match user
iInputs against sensitive values.

Non-constant Time Comparison

P Common Coding Mistakes

Using fail-fast comparison logic to match user
iInputs against sensitive values.

Example: JavaScript native string comparison
operators (===, ==)

0 Node Security Platform REPORT VULNERABILITY ADVISORIES

Non-Constant Time String Vulnerable: <=0.1.1

" Patched: >=0.1.2
Comparison o
4 R

Example: Using Fail Fast operators to compare csrf tokens

Overview

Affected versions of csrf-lite are vulnerable to timing attacks as a result of testing CSRF tokens via a fail-early
comparison instead of a constant-time comparison.

Vulnerability DB > @ npm

Q@ Timing Attack

Affecting node-forge package, versions <0.6.33

Example: Using a Fail Fast iterator to compare byte arrays

noe- or‘ge - -v- v [JC 1= - © » < ". X -)

VDLOZTADNY
-

message digests, and various utilities. Affected versions of the package are vulnerable to a Timing Attack
due to unsafe HMAC comparison. The HMAC algorithm produces a keyed message by pairing a hash
function with a cryptographic key. Both the key and a message serve as input to this algorithm, while it
outputs a fixed-length digest output which can be sent with the message. Anyone who knows the key can
repeat the algorithm and compare their calculated HMAC with one they have received, to verify a
message ariginated from someone with knowledee of the kev and has not heen tamnered with.

b b

Non-constant Time Comparison

¥) OWASP

v/ Use a constant-time comparison logic that takes the
same amount of time regardless of the input values.

Non-constant Time Comparison

Mitigations.

o e

v/ Use a constant-time comparison logic that takes the
same amount of time regardless of the input values.

function constantTimeEquals(strA, strB) {
1f (strA.length !== strB.lengthS {
return false;
} else {
let equal = 0;
for (let 1 = @; 1 < strA.length; 1++) {
}equal |= strA.charAt(i) A strB.charAt(i);
return equal === 0;
}
¥

1
2
3
4
5
6
I
8
9
0
1

b

Sensitive Data Exposure

Pattern # o Remote Memory ExXposur

Remote Memory Exposure

$) OWASP
v A

Cormmon Coding Mistakes

*Prior to Node.js 8, the Buffer constructor that takes a
number as an argument, generates a Buffer instance
with uninitialized underlying memory.

// Uninitialized Buffer of length 1000
var buffer = new Buffer(1000); |

*The contents of a newly created Buffer remain unknown
and might contain sensitive data.

© Remote Memory Exposure
Affecting mongoose package, versions <3.8.39 >=3.5.5 || <4.3.6 >=4.0.0

Example: Using unsafe Buffer constructor

Details
Initializing a Buffer field in a document with integer N creates a Buffer of length N with non zero-ed

out memory. Example:

var x = new Buffer(108); // uninitialized Buffer of length 100

// vs

var x = new Buffer(' "Y: // initialized Buffer with value of '100’

0 Node Security Platform REPORT VULNERABILITY ADVISORIES LOGIN

Remote Memory Disclosure Vulnerable: <= 10.0

Patched: >= 1.01
Module: ws

Example: Using unsafe Buffer constructor

Overview

Versions of ws prior to 1.01 are affected by a remote memory disclosure vulnerability.

In certain rare circumstances, applications which allow users to control the arguments of a client.ping() call will
cause ws to send the contents of an allocated but non-zero-filled buffer to the server. This may disclose sensitive

information that still exists in memory after previous use of the memory for other tasks.

Test Vulnerability DB Docs Blog Features

@ Remote Memory Exposure
Affecting request package, versions <2.68.0 >2.2.5

Example: Using unsafe Buffer constructor

Details

Constructing a Buffer class with integer N creates a Buffer of length N with non zero-ed out memory.
Example:

Buffer(1068);

Buffer('100");

Remote Memory Exposure

) OWASP

e e gat i@

v’ Upgrade to Node.js version 8.11.3 or later (also fixes
DoS Vulnerability related to Buffer)

Remote Memory Exposure

) OWASP e :
B e T gations

o T

v’ Upgrade to Node.js version 8.11.3 or later (also fixes
DoS Vulnerability related to Buffer)

v Use a safe method Buffer.alloc(size) to create a buffer
that is initialized with zeroes:
1 konst buf = Buffer.alloc(5);

2 console, log(buf);
3 // Prints: <Buffer 00 00 00 00 00>

Sensitive Data Exposure

Pattern # /7 Insecure Network Usage

Insecure Network Usage

=) OWASP

Puriess Common Coding Mistakes - 0 2

*Using insecure HT TP protocol to download
resources as part of install scripts or at runtime.

*Using insecure HT TP protocol to download
resources as part of install scripts or at runtime.

Original Connection

Man in the Middle

Insecure Network Usage

) OWASP

e gat i@

v Download resources over secure HI1 TPS connection.

v Provide an option for users to download dependencies
in advance and specify the location path.

28% . Insecure Access to File System
21% ‘ Sensitive Data Exposure
15% . Denial of Service
13% . Cross Site Scripting (XSS)
10% . Injection Attack
5% - Malicious Attack
2% . Logic Issues
2% . Broken Access Control
1% & Security Misconfiguration
1% & Cross Site Request Forgery (CSRF)
1% & Open Redirection
0.50% JSONP Vulnerability
0.25% Clickjacking

0.25% Ensecure Version of Embedded Dependecies

Denial of Service (DoS)

Pattern # 8 Exnhausting System Resources

Denial Of SerVice Vulnerable: >=0.10.0

<=0.10.8

Module: uws Patched: >=010.9
Published: October 17th, 2016

Reported by: Luigi Pinca SY
CVE-NONE 7. 5

CWE-730 High

Example: Exceeding V8’s maximum string size limit

Affected versions of uws do not properly handle large websocket messages when permessage-deflate is enabled,

which may result in a denial of service condition.

If uws recieves a 256Mb websocket message when permessage-deflate is enabled, the server will compress the
message prior to executing the length check, and subsequently extract the message prior to processing. This can
result in a situation where an excessively large websocket message passes the length checks, yet still gets cast from

a Buffer to a string, which will exceed v8's maximum string size and crash the process.

Vulnerability DB > @ npm

@ Denial of Service (DoS)

Affecting websocket-driver package, versions <0.3.1

Example: Exceeding V8's maximum buffer size limit

Affected versions of this package are vulnerable to Denial of Service (DoS) attacks. The Buffer lengthis
immediately allocated after reading the frame, up to a length that is no more that MAX_LENGTH , which is
2/53 -1 (the largest precisely representable |S integer), and rejects larger frames with a 1009 error before
creating the new Buffer. But Node buffers have a max length of 1GB &' (oxafffffff). Parsing an incoming
frame with length between 1GB and MAX_LENGTH , the parser will throw (and perhaps crash your whole
server). Attackers can use this to their advantage and cause a Denial of Service on the servers.

Test Vulnerability DB Docs Blog Features

Vulnerability DB > G npm

@ Denial of Service (DoS)

Affecting ghost package, versions <0.5.9

Example: Unrestricted file uploads exhausting file-system space

ghost [is a blogging platform. Affected versions of the package are vulnerable to Denial of Service
(DoS) attack, via filesystem exhaustion. When updating a user avatar, the pervious one is saved and not
deleted. Also, the file size of the avatar is not limited.

Remediation

Upgrade ghost to version 0.5.9 or higher.

Dafarancac

DoS by Exhausting System Resources

] OWASP

P e Common Coding Mistake

*Allocating unrestricted amount of system resources based on
the size of a user input.

v/ Validate size of a user input before processing it

Denial of Service (DoS)

By Small Targeted Inputs

IIIIIIIIIIIIIIIIIIIIIIII

i < R A T R
1#4 age S
. ! ! ! b m
4 .‘..“ Q “ 1 “ | “ | “ 1
&1 Y “ | “ | “ | “
P | S “ | “ | “ | “ |
F WO “ P P P “
Lo b
w7l
Xt
e ol
o .w
. g ©
it O <«
H —
._m -
o .E
> @
> Ll
: =
u_
R T R T R

London 2nd-6th July 2018
e oo S

AppSec Europe

o
@
@
=
o

Event Queue

G R
- R
o BT o . “ 0 “ ! “ ! “
(a W L . . “
¥ g b - - “
Q “ 1 “ | “ | “ 1
21 LV o P P “
P | S “ | “ | “ 1 “ 1
it WO ! P P P “
S S A S R R
¥
X b
- M
Fy
o 3
O w
O <«
= c
._m —
o .S
S ©
> Ll
: 2
.4...‘_
R T R

B —

v =
w-m _
=2 ﬁx
u.J) S
ol +
u
043 d
T2)
3 53 o
o< 3 v
o

Event Queue

) OWASP
AppSec Europe

London 2nd-6th July 2018

JavaScript Code (Synchronous / callback code)

l Worker Pool

————————————————————————————

Requests

————————————————————————————

Event Loop
(Main Thread)

————————————————————————————

——

__

Event Queue

1 OWASP
AppSec Europe

London 2nd-6th July 2018

vcl_ : = - ;
Expensive |/O Operations
{ Worker Pool
_ FileSystem
Requests 4 m T Network
e Event Loop

S 5 (Main Thread) . Database

Event Queue

] OUWASP

Requests

AppSec Europe

London 2nd-6th July 2018

Expensive |/O Operations
Worker Pool

(Main Thread)

Event Queue J Callback

OWASP

AppSec Europe

London 2nd-6thJuly 2018

Event Loop
(Main Thread)

Worker Pool

Appase-Eutope

London 2nd-6th July 2018

A malicious client could submit an "evil input", make your
threads block, and keep them from working on other clients.

This would be a Denial of Service attack.

- Node.js Docs

OWARSP
AppSec Europe

f,"»!

Event Loop
(Main Thread)

London 2nd-6th July 2018 : e o i N L S e N e it SR

Denial of Service (DoS)

Pattern # 9 Blocking Event Loop

DoS by Blocking Event Loop

) OWASP

P ss Common Coding Mistakes

*Running an execution loop whose iterations depend on
the length of a user input.

0 Node Security Platform REPORT VULNERABILITY ADVISORIES

Denial of Sel’Vice Vulnerable: < 2.0.0

Patched: >=2.0.0
Module: ecstatic

Published: December 13th, 2017
Reported by: Checkmarx
CVE-2016-10703

CWE-400

Overview

ecstatic , @ simple static file server middleware, is vulnerable to denial of service. If a payload with a large number of

null bytes (%00) is provided by an attacker it can crash ecstatic by running it out of memory.

0 Node Security Platform REPORT VULNERABILITY ADVISORIES LOGIN

Denial Of Ser\/ice Vulnerable: < 2.0.0

Patched: >=2.0.0
Module: ecstatic

// Strip any null bytes from the url
while(reqg.url.index0f('%00") l== -1) {

reg.url = req.url.replace(/\%00/g, '');

Overview

ecstatic , @ simple static file server middleware, is vulnerable to denial of service. If a payload with a large number of

null bytes (%00) is provided by an attacker it can crash ecstatic by running it out of memory.

*Running an execution loop whose iterations depend on
the length of a user input.

*Using unsafe Regular Expressions

By default, regular expressions get executed in the
main event loop thread

*EVvil regex can take exponential execution time when
applied to certain non-matching inputs.

Re DOS Vulnerable: <=11.6

Patched: >=11.7

Module: brace-expansion

Published: April 25th, 2017 GuSS
Reported by: myvyang 6 . 2
CVE-NONE ik
CWE-400

Overview

Affected versions of brace-expansion are vulnerable to a regular expression denial of service condition.

Proof of Concept

var expand = require('brace-expansion');
expand

1
({'llilllillllllllll'llillll'lll'lllll'lll"li'Ililllllllllllllilliilllilllllllllllllil

Re DOS Vulnerable: <=1.1.6

Patched: >=11.7

Module: brace-expansion

Published: April 25th, 2017 S
Reported by: myvyang 6 . 2
CVE-NONE M

CWE-400

AR)H(H)?S

Affected versions of brace-expansion are vulnerable to a regular expression denial of service condition.

Proof of Concept

var expand = require('brace-expansion');
expand

1
({'llllllll'lll'lllllllll'lll'll"Ill'll'l"llIillllll"lIl'IIllllllllll"'ll'lllll'lll

Vulnerable: <=11.6

Patched: >=11.7

InpUt forma‘t: 1111111111111111111111111111111\n

Denial of Service (DoS)

Pattern # 10 Crashing Event Loop By
Unhandled Operational Errors

DoS by Crashing Event Loop by Unhandled Operational Errors

¥) OWASP

1. Failing to handle Invalid User Inputs

Vulnerability DB > [npm

@ Denial of Service (DoS)

Affecting connect package, versions >=1.4.0 <2.0.0

Invalid Character

Root Cause: Unexpected Trailing \ in URL localhost:3000/index.html

the node server by requesting a url with a trailing backslash in the end.

Remediation

Upgrade connect to version 2.0.0 or higher.

0 Node Security Platform REPORT VULNERABILITY ADVISORIES

Denial of Service via malformed Vulnerable: >= 15.0.0 <=
16.1.0

accept-encoding header Patched: >= 1611

Module: hapi CVss

Malformed Request Header
Root Cause: Unexpected accept-encoding HTTP Header Value

Overview

Affected versions of hapi will crash or lock the event loop when a malformed accept-encoding header is recieved.

Test Vulnerability DB Docs Blog Features

Affecting nunjucks package, versions <2.4.3

Overview

Invalid Object Shape

Root Cause: Type coercion of HTTP Request Parameters

. The risk of exploit Is especially high given the fact express, koa and many other Node. s Servers
allow users to force a query parameter to be an array using the param[]=value notation.

Details

The issue & opened by Matt Austin @ explains the vulnerability very well:

The following string works as expected:

DoS by Crashing Event Loop by Unhandled Operational Errors

Cornmon Coding Mistakes = i:.

f}.i}r-_ -

* User input coercion via HTTP Request Parameters in gs, Express, Koa

// GET /search?conference=appSecEU

//=>"appSecEU”

 — DoS by Crashing Event Loop by Unhandled Operational Errors
e Common Coding Mistakes -« 2

g -

* User input coercion via HTTP Request Parameters in gs, Express, Koa

// GET /search?conference=appSecEU&conference=appSecUSA

//=>

DoS by Crashing Event Loop by Unhandled Operational Errors

e

Compnorrconnariviskacecas el 3
* User input coercion via HTTP Request Parameters in gs, Express, Koa

// GET /search?conference=appSecEU&conference=appSecUSA

//=>["appSecEU”, “appSecUSA”]

DoS by Crashing Event Loop by Unhandled Operational Errors

Cornmon Coding Mistakes = i:.

* User input coercion via HTTP Request Parameters in gs, Express, Koa

// GET /search?conference|]=appSecEU

//=>[" appSecEU"”]

DoS by Crashing Event Loop by Unhandled Operational Errors

e

Compnorrconnariviskacecas el 3
* User input coercion via HTTP Request Parameters in gs, Express, Koa

// GET /search?conferencelappSecEU][year]=2018

//=>

DoS by Crashing Event Loop by Unhandled Operational Errors

* User input coercion via HTTP Request Parameters in gs, Express, Koa

// GET /search?conferencelappSecEU][year]=2018

//=>{appSecEU: { year: '2018' }}

v/ Validate user inputs for expected value, type, or shape
before processing it. (using joi package, for example)

DoS by Crashing Event Loop by Unhandled Operational Errors

) OWASP

W s Common Coding Mistakes

1. Failing to handle Unexpected User Inputs
2. Missing or incorrect operational error handling

DoS by Crashing Event Loop by Unhandled Operational Errors

) OWASP

W s Common Coding Mistakes

Mechanisms to communicate Operational Errors

\’[throw new Error('something bad happened!');]

DoS by Crashing Event Loop by Unhandled Operational Errors

¥) OWASP

Mechanisms to communicate Operational Errors

[throw new Error('something bad happened!');]

callback(new Error('something bad happened!')); }

Mechanisms to communicate Operational Errors

[throw new Error('something bad happened!');]

callback(new Error('something bad happened!')); }

return Promise.reject(new Error('something bad happened!’)); }

DoS by Crashing Event Loop by Unhandled Operational Errors

p) OWASP

jzzai Common Coding Mistakes

Mechanisms to communicate Operational Errors

[throw new Error('something bad happened!');]

callback(new Error('something bad happened!')); }

return Promise.reject(new Error('something bad happened!’));

~

myEmitter.emit('error', new Error(something bad happened!'));

J

0 Node Security Platform REPORT VULNERABILITY ADVISORIES

Denial of Sel’Vice Vulnerable: <=6.4.0

Patched: >=6.41

Module: nes
Published: April 14th, 2017 SV
Reported by: iipokypatop 7. 5

Example: Failure to handle error object passed in the callback

Overview

Affected versions of nes are vulnerable to denial of service when given an invalid cookie header, and websocket
authentication is setto cookie . Submitting an invalid cookie on the websocket upgrade request will cause the node

process to throw and exit.

Remediation

DoS by Crashing Event Loop by Unhandled Operational Errors

¥) OWASP

v Be aware of the error delivery mechanism used by the
invoked function and handle errors accordingly.

London 2nd-6th July 2018

mpseceaope (QUICK Recap

Insecure Access to File System

Sensitive Data Exposure

- @

15% Denial of Service
13% Cross Site Scripting (XSS)
10% Injection Attack
5% Malicious Attack
2% Logic Issues
2% Broken Access Control
1% Security Misconfiguration
1% Cross Site Request Forgery (CSRF)
1% Open Redirection
0.50% JSONP Vulnerability
0.25% Clickjacking

0.25% Ensecure Version of Embedded Dependecies

OWASP

London 2nd-6th July 2018

wsecsone (JUICK Recap

* Insecure Access to File System
* Pattern #1 Directory Traversal
e Pattern #2 Symlink Attack

15%

13%

10%
5%
2%
2%
1%
1%
1%

0.50%

0.25%
0.25%

Insecure Access to File System

Sensitive Data Exposure

Denial of Service

Cross Site Scripting (XSS)

Injection Attack

Malicious Attack

Logic Issues

Broken Access Control
Security Misconfiguration

Cross Site Request Forgery (CSRF)

Open Redirection

JSONP Vulnerability

Clickjacking

Ensecure Version of Embedded Dependecies

OWASP

London 2nd-6th July 2018

| orsecenore. QUICK RECAP

* Sensitive Data Exposure
» Pattern #1 Leaking Application Secrets
e Pattern #2 Predictable Secrets (Insecure Randomness)
 Pattern #3 Predictable Secrets (Non-constant Time Comparison)
* Pattern #4 Remote Memory Exposure
e Pattern #5 Insecure Network Usage

Insecure Access to File System

Sensitive Data Exposure

Denial of Service

Cross Site Scripting (XSS)

Injection Attack
Malicious Attack

Logic Issues

Broken Access Control
Security Misconfiguration

Cross Site Request Forgery (CSRF)

Open Redirection

0.50% JSONP Vulnerability
0.25% Clickjacking

0.25% Ensecure Version of Embedded Dependecies

) OUWASP

London 2nd-6th July 2018

| orsecenore. QUICK RECAP

e Denial of Service

e Pattern #1 Exhausting System Resources
 Pattern #2 Blocking Event Loop

» Pattern #3 Crashing Event Loop By Unhandled Operational Errors

Insecure Access to File System

Sensitive Data Exposure

Denial of Service

Cross Site Scripting (XSS)

Injection Attack
Malicious Attack

Logic Issues

Broken Access Control
Security Misconfiguration

Cross Site Request Forgery (CSRF)

Open Redirection

0.50% JSONP Vulnerability
0.25% Clickjacking

__0.25% Ensecure Version of Embedded Dependecies

Patterns in Node Package Vulnerabilities

OREILLY"

Safar]_ Enterprise Pricing

Patterne Patterns in Node Package

Node Package

Vilnerabilties Vulnerabilities

[o by Chetan Karande
Publisher: O'Reilly Media, Inc.

Z ¢
7V A Release Date: June 2018
ISBN: 9781491999981

Topics: Node.js

View table of contents

Book Description

With more than 500 new Node.js packages arriving each day, npm is the world’s largest reusable package registry and the Node
But as the number of detected vulnerabilities continues to rise significantly, the packages themselves are becoming a liability. Th
opers and penetration testers practical strategies for evaluating and working with today’s npm packages.

https://www.safaribooksonline.com/library/view/patterns-in-node/9781491999981/

node.advisories.io

NODE ADVISORIES NAVIGATOR

CLASSIFICATION OF KNOWN NODE.JS PACKAGE ADVISORIES BY TYPE

INSECURE ACCESS TO FILE SYSTEM

SENSITIVE DATA EXPOSURE

DENIAL OF SERVICE

CROSS SITE SCRIPTING (XSS)

INJECTION ATTACK

MALICIOUS PACKAGE

LOGIC ISSUES

BROKEN ACCESS CONTROL

SECURITY MISCONFIGURATION

CROSS-SITE REQUEST FORGERY (CSRF)

https://node.advisories.io/dashboard?source=fluent18

node.advisories.io

CROSS-SITE REQUEST FORGERY (CSRF) (8)

Title Package Date Published

Cross-Site Request Forgery (CSRF) in eslint_d eslint_d 5/8/17

Cross-Site Request Forgery (CSRF) in keystone keystone 12/25/17

Cross-Site Request Forgery in jquery-ujs jquery-ujs 6/23/15

Cross-site Request Forgery (CSRF) auth0-js 3/1/18

Cross-site Request Forgery (CSRF) pym.js 2/20/18

Cross-site Request Forgery (CSRF) in auth0-lock auth0-lock 4/9/18

No CSRF Validation droppy 3/28/16

Non-Constant Time String Comparison in csrf-lite csri-lite 6/21/16

https://node.advisories.io/dashboard?source=fluent18

AppSec Europe

London 2nd-6th July 2018

k. 7
@karande_c V=

