
Patterns in Node Package
Vulnerabilities

Chetan
Karande

{
“Principal Software Engineer”: “Depository Trust & Clearing Corporation (DTCC)”,
“Project Leader”: “OWASP NodeGoat Project”,
“Author”: []

 ,

}

JSON.stringify(me);

532 packages/day

~ 700,000 packages

88 Disclosures

603 Vulnerabilities

1,098 Advisories

1 : 600

 npm audit

 Snyk CLI

By seeking and blundering
we learn.

- Johann Wolfgang von Goethe

528

1,084

+

1,023 Unique Advisories

Insecure Access to File System

Pattern # 1 Directory Traversal

 Caused by an insecure dependency vulnerable to Directory Traversal

Missing or insufficient user input validation for path
traversal characters before using it in a URL to serve
contents on the server.

Directory Traversal
Common Coding Mistakes

Missing or insufficient user input validation for path
traversal characters before using it in a URL to serve
contents on the server.

• /
•../
•%2f
•%2e%2e/
•%2e%2e%2f

Directory Traversal
Common Coding Mistakes

Directory Traversal
Common Coding Mistakes

Directory Traversal
Mitigations

✓ If the path needs to be supplied from the user input,
sanitize the input to remove path traversal characters
(./ and ../ as well as encoded variations)

Insecure Access to File System

Pattern # 2 Symlink Attack /Arbitrary File Write

Symlink Attack

Symlink Attack

Application sharing the
host server with external users

Symlink Attack

Application sharing the
host server with external users

Shared
 folders

A malicious user sharing the host, could exploit this
vulnerability to:

Symlink Attack

A malicious user sharing the host, could exploit this
vulnerability to:

Corrupt or destroy vital system or application files to
which only the target application has the access.

Symlink Attack

Using predictable file or folder names when writing to
shared directories on a host server shared with external
users.

Symlink Attack
Common Coding Mistakes

 Example: The package writing logs to the shared /tmp directory with a
predictable file name

 > ln –s <source file> <target file>

✓ Avoid using shared system folders.

Symlink Attack
Mitigations

✓ Avoid using shared system folders.

✓ If you have to use a shared folder for writing
non-sensitive data, use crypto module’s randomBytes
method to generate random filenames.

Symlink Attack
Mitigations

The more you leave out,

 the more you highlight

 what you leave in.

- Henry Green

Sensitive Data Exposure

Pattern # 3 Leaking Application Secrets

Application-specific secrets appearing at insecure places
such as as:

•code repositories,
•log files,
•client-side storage,
•URLs,
•application global namespace

Leaking Application Secrets
Common Coding Mistakes

Example: Leaking the SSL private key in the code repository

Example: URLs with authentication tokens appearing in the logs

 Example: OAuth Bearer Token appearing in the browser local-storage

✓ Securely store applications secrets in Hardware
Security Module (HSM) or Key Management Services.

Leaking Application Secrets
Mitigations

✓ Securely store applications secrets in Hardware
Security Module (HSM) or Key Management Services.

✓ Mask any sensitive data before it appears in the log

files.

Leaking Application Secrets
Mitigations

✓ Securely store applications secrets in Hardware
Security Module (HSM) or Key Management Services

✓ Mask any sensitive data before it appears in the log
files

✓ To reduce impact of a leak, use short-lived tokens.

Leaking Application Secrets
Mitigations

Sensitive Data Exposure

Predictable Secrets

Sensitive Data Exposure

Predictable Secrets
Pattern # 4 Insecure Randomness

• Using Math.random() method is to generate random values
in a security-sensitive context (random tokens, resource IDs,
or UUIDs).

• Math.random() is cryptographically insecure. It can produce
predictable values.

Insecure Randomness
Common Coding Mistakes

 Example: Using Math.random() to generate UUID

 Example: Using Math.random() to generate Socket IDs

✓ Use crypto module to generate random numbers
instead of Math.random()

Insecure Randomness
Mitigations

Insecure Randomness
Mitigations

Insecure Randomness
Mitigations

Sensitive Data Exposure

Predictable Secrets
Pattern # 5 Non-constant Time Comparison

Using fail-fast comparison logic to match user
inputs against sensitive values.

Non-constant Time Comparison
Common Coding Mistakes

Using fail-fast comparison logic to match user
inputs against sensitive values.

Example: JavaScript native string comparison
operators (=== , ==)

Non-constant Time Comparison
Common Coding Mistakes

 Example: Using Fail Fast operators to compare csrf tokens

 Example: Using a Fail Fast iterator to compare byte arrays

✓ Use a constant-time comparison logic that takes the
same amount of time regardless of the input values.

Non-constant Time Comparison
Mitigations

✓ Use a constant-time comparison logic that takes the
same amount of time regardless of the input values.

Non-constant Time Comparison
Mitigations

Sensitive Data Exposure

Pattern # 6 Remote Memory Exposure

•Prior to Node.js 8, the Buffer constructor that takes a
number as an argument, generates a Buffer instance
with uninitialized underlying memory.

•The contents of a newly created Buffer remain unknown
and might contain sensitive data.

Remote Memory Exposure
Common Coding Mistakes

Examples of Uninitialized Memory Exposure

 Example: Using unsafe Buffer constructor

Example: Using unsafe Buffer constructor

Example: Using unsafe Buffer constructor

✓ Upgrade to Node.js version 8.11.3 or later (also fixes
DoS Vulnerability related to Buffer)

Remote Memory Exposure
Mitigations

✓ Upgrade to Node.js version 8.11.3 or later (also fixes
DoS Vulnerability related to Buffer)

✓Use a safe method Buffer.alloc(size) to create a buffer
that is initialized with zeroes:

Remote Memory Exposure
Mitigations

Sensitive Data Exposure

Pattern # 7 Insecure Network Usage

•Using insecure HTTP protocol to download
resources as part of install scripts or at runtime.

Insecure Network Usage
Common Coding Mistakes

•Using insecure HTTP protocol to download
resources as part of install scripts or at runtime.

Insecure Network Usage
Common Coding Mistakes

✓ Download resources over secure HTTPS connection.

✓ Provide an option for users to download dependencies
in advance and specify the location path.

Insecure Network Usage
Mitigations

Denial of Service (DoS)

Pattern # 8 Exhausting System Resources

Example: Exceeding V8’s maximum string size limit

Example: Exceeding V8’s maximum buffer size limit

Example: Unrestricted file uploads exhausting file-system space

•Allocating unrestricted amount of system resources based on
the size of a user input.

DoS by Exhausting System Resources
Common Coding Mistake

✓ Validate size of a user input before processing it

DoS by Exhausting System Resources
Mitigations

Denial of Service (DoS)

By Small Targeted Inputs

Event Loop
(Main Thread)

Event Queue

Worker Pool

Event Loop
(Main Thread)

Requests

Event Queue

Worker Pool

Event Loop
(Main Thread)

Requests

Event Queue

Worker Pool

JavaScript Code (Synchronous / callback code)

Event Loop
(Main Thread)

Requests

Event Queue

Worker Pool

File System

Network

Database

Expensive I/O Operations

Event Loop
(Main Thread)

Requests

Event Queue

Worker Pool

File System

Network

Database

Callback

Expensive I/O Operations

Event Loop
(Main Thread)

Worker Pool

A malicious client could submit an "evil input", make your
threads block, and keep them from working on other clients.

This would be a Denial of Service attack.
- Node.js Docs

Event Loop
(Main Thread)

Denial of Service (DoS)

Pattern # 9 Blocking Event Loop

•Running an execution loop whose iterations depend on
the length of a user input.

DoS by Blocking Event Loop
Common Coding Mistakes

DoS by Blocking Event Loop
Common Coding Mistakes

DoS by Blocking Event Loop
Common Coding Mistakes

•Running an execution loop whose iterations depend on
the length of a user input.

•Using unsafe Regular Expressions

DoS by Blocking Event Loop
Common Coding Mistakes

•By default, regular expressions get executed in the
main event loop thread

•Evil regex can take exponential execution time when
applied to certain non-matching inputs.

DoS by Blocking Event Loop
Regular Expression Denial of Service (ReDoS)

 ^(.*,)+(.+)?$/

Input format: ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,\n

Input Length Execution Time
25 2 sec
26 4 sec
27 9 sec
28 15 sec
30 1 minute
35 34 minutes

Denial of Service (DoS)

Pattern # 10 Crashing Event Loop By
Unhandled Operational Errors

 1. Failing to handle Invalid User Inputs

DoS by Crashing Event Loop by Unhandled Operational Errors
 Common Coding Mistakes

Invalid Character
Root Cause: Unexpected Trailing \ in URL localhost:3000/index.html\

Malformed Request Header
Root Cause: Unexpected accept-encoding HTTP Header Value

Invalid Object Shape
Root Cause: Type coercion of HTTP Request Parameters

• User input coercion via HTTP Request Parameters in qs, Express, Koa

 // GET /search?conference=appSecEU
 request.query.conference
 //=> ”appSecEU”

DoS by Crashing Event Loop by Unhandled Operational Errors
 Common Coding Mistakes

• User input coercion via HTTP Request Parameters in qs, Express, Koa

 // GET /search?conference=appSecEU&conference=appSecUSA
 request.query.conference
 //=>

DoS by Crashing Event Loop by Unhandled Operational Errors
 Common Coding Mistakes

• User input coercion via HTTP Request Parameters in qs, Express, Koa

 // GET /search?conference=appSecEU&conference=appSecUSA
 request.query.conference
 //=> [”appSecEU”, “appSecUSA”]

DoS by Crashing Event Loop by Unhandled Operational Errors
 Common Coding Mistakes

• User input coercion via HTTP Request Parameters in qs, Express, Koa

 // GET /search?conference[]=appSecEU
 request.query.conference
 //=> [” appSecEU”]

DoS by Crashing Event Loop by Unhandled Operational Errors
 Common Coding Mistakes

• User input coercion via HTTP Request Parameters in qs, Express, Koa

 // GET /search?conference[appSecEU][year]=2018
 request.query.conference
 //=>

DoS by Crashing Event Loop by Unhandled Operational Errors
 Common Coding Mistakes

• User input coercion via HTTP Request Parameters in qs, Express, Koa

DoS by Crashing Event Loop by Unhandled Operational Errors
 Common Coding Mistakes

 // GET /search?conference[appSecEU][year]=2018
 request.query.conference
 //=> {appSecEU: { year: '2018' }}

✓ Validate user inputs for expected value, type, or shape
before processing it. (using joi package, for example)

DoS by Crashing Event Loop by Unhandled Operational Errors
Mitigations

 1. Failing to handle Unexpected User Inputs
 2. Missing or incorrect operational error handling

DoS by Crashing Event Loop by Unhandled Operational Errors
 Common Coding Mistakes

Mechanisms to communicate Operational Errors

DoS by Crashing Event Loop by Unhandled Operational Errors
 Common Coding Mistakes

throw new Error('something bad happened!');

DoS by Crashing Event Loop by Unhandled Operational Errors
 Common Coding Mistakes

callback(new Error('something bad happened!'));

throw new Error('something bad happened!');

Mechanisms to communicate Operational Errors

DoS by Crashing Event Loop by Unhandled Operational Errors
 Common Coding Mistakes

callback(new Error('something bad happened!'));

throw new Error('something bad happened!');

return Promise.reject(new Error('something bad happened!'));

Mechanisms to communicate Operational Errors

DoS by Crashing Event Loop by Unhandled Operational Errors
 Common Coding Mistakes

callback(new Error('something bad happened!'));

throw new Error('something bad happened!');

return Promise.reject(new Error('something bad happened!'));

myEmitter.emit('error', new Error(something bad happened!'));

Mechanisms to communicate Operational Errors

Example: Failure to handle error object passed in the callback

✓ Be aware of the error delivery mechanism used by the
invoked function and handle errors accordingly.

DoS by Crashing Event Loop by Unhandled Operational Errors
Mitigations

Quick Recap

• Insecure Access to File System
• Pattern #1 Directory Traversal
• Pattern #2 Symlink Attack

Quick Recap

• Sensitive Data Exposure
• Pattern #1 Leaking Application Secrets
• Pattern #2 Predictable Secrets (Insecure Randomness)
• Pattern #3 Predictable Secrets (Non-constant Time Comparison)
• Pattern #4 Remote Memory Exposure
• Pattern #5 Insecure Network Usage

Quick Recap

• Denial of Service
• Pattern #1 Exhausting System Resources
• Pattern #2 Blocking Event Loop
• Pattern #3 Crashing Event Loop By Unhandled Operational Errors

Quick Recap

Patterns in Node Package Vulnerabilities

https://www.safaribooksonline.com/library/view/patterns-in-node/9781491999981/

node.advisories.io

https://node.advisories.io/dashboard?source=fluent18

node.advisories.io

https://node.advisories.io/dashboard?source=fluent18

@karande_c

