
Katy Anton

Injecting Security Controls
 into Software Applications

@KatyAnton

About me

• Software development background

• Principal Security Consultant - CA Technologies | Veracode

• OWASP Bristol Chapter Leader

• Project co-leader for OWASP Top 10 Proactive Controls
(@OWASPControls)

Injection

@KatyAnton

Injection

First	mentioned	in	Phrack	magazine	in	1998

2004 2009 2010 2013 2017

Injection A6 A2 A1 A1 A1

20	years	anniversary	

@KatyAnton

Decompose the Injection

Get / Post Data

File Uploads
HTTP Headers

Database Data

Config files

SQL

HTML

XML

Bash Script

LDAP Query

SQL Parser

HTML Parser

XML Parser

Shell

LDAP Parser

Input Output Parser

Data	interpreted	as	Code

@KatyAnton

Extract Security Controls

Input Output Parser

Vulnerability Encode Output Parameterize Validate Input
SQL Injection R R

XSS R R
XML Injection

(XPATH Injection) R R

OS Cmd Injection R R R
LDAP Injection R R

Primary Controls Defence in depth

Sensitive Date Exposure

Data at Rest and in Transit

@KatyAnton

Vulnerabilities

Data Types Encryption Hashing
Data at Rest

Require initial value
E.q: credit card

R

Data at rest
Don’t require initial value

E.q: user passwords
R

Data in transit R

@KatyAnton

How Not to Do it !

Data at Rest: Vulnerabilities

encryption_key = PBKF2(password, salt, iterations, key_length);

In the same folder - 2 file:

The content of password.txt:

@KatyAnton

Security Controls

Cryptographic Storage
Strong Encryption Algorithm
• AES

Key Management
• Store unencrypted keys away from the encrypted data.
• Protect keys in a Key Vault (Hashicorp Vault / Amazon KMS)
• Keep away from home grown key management solutions.
• Define a key lifecycle.
• Build support for changing algorithms and keys when needed
• Document procedures for managing keys through the lifecycle

Source: https://www.owasp.org/index.php/Cryptographic_Storage_Cheat_Sheet

https://www.vaultproject.io/
https://aws.amazon.com/kms/
https://www.owasp.org/index.php/Cryptographic_Storage_Cheat_Sheet

@KatyAnton

Security Controls

Password Storage - Use a Strong Algorithm
• PBKDF2
• bcrypt
• scrypt
• Argon2i

• Java
• PHP - password_hash() supports Argon2i from version 7.2

Source: https://www.owasp.org/index.php/Password_Storage_Cheat_Sheet

https://www.owasp.org/index.php/Password_Storage_Cheat_Sheet

@KatyAnton

Security Controls

Data in Transit

• Client —> Application server
• Server—> Non-browser components

Intrusion Detection

“If a pen tester is able to get into a system
without being detected, then there is insufficient
logging and monitoring in place. “

@KatyAnton

Security Controls

Security Logging
• Security logging: The security control that developers can use to log

security information during the runtime operation of an application.

Logging implementation
• Logging framework : SLF4J with Logback or Apache Log4j2.
• Use a standard logging approach to facilitate correlation and analysis.

@KatyAnton

The 6 Best Detection Point Types

Good attack identifiers:
1. Authorisation failures
2. Authentication failures
3. Client-side input validation bypass
4. Whitelist input validation failures
5. Obvious code injection attack
6. High rate of function use

Source:	https://www.owasp.org/index.php/AppSensor_DetectionPoints

https://www.owasp.org/index.php/AppSensor_DetectionPoints
https://www.owasp.org/index.php/AppSensor_DetectionPoints

@KatyAnton

Intrusion Detection Points Examples

Request Exceptions
• Application receives GET when expecting POST
• Additional form or URL parameters submitted with request

Authentication Exceptions
• The user submits a POST request which only contains the username variable.

The password variable has been removed.
• Additional variables received during an authentication request (like ‘admin=true’')

Input Exceptions
• Input validation failure on server despite client side validation
• Input validation failure on server side on non-user editable parameters (hidden

fields, checkboxes, radio buttons, etc)
Source: https://www.owasp.org/index.php/AppSensor_DetectionPoints

https://www.owasp.org/index.php/AppSensor_DetectionPoints
https://www.owasp.org/index.php/AppSensor_DetectionPoints

Vulnerable Components

Using Software Components with Known
Vulnerabilities

@KatyAnton

Root Cause

• Difficult to understand
• Easy to break
• Difficult to test
• Difficult to upgrade
• Increase technical debt

@KatyAnton

Third Party Components Age

“45% of the third-party components
are over 4 years old”

Source: Synopsys - State of Software Composition 2017

@KatyAnton

Components Examples

Example of external components:
• Open source libraries - for example: a logging library
• APIs - for example: vendor APIs
• Libraries / packages by another team within same company

@KatyAnton

Example 1: Implement Logging Library

• Third-party - provides logging levels:
• FATAL, ERROR, WARN, INFO, DEBUG.

• We need only:
• DEBUG, WARN, INFO.

@KatyAnton

Simple Wrapper

Helps to:
• Expose only the functionality required.
• Hide unwanted behaviour.
• Reduce the attack surface area.
• Update or replace libraries.
• Reduce the technical debt.

@KatyAnton

Example 2: Implement a payment gateway

Scenario:
• Vendor APIs - like payment gateways
• Can have more than payment gateway one in application
• Require to be inter-changed

@KatyAnton

Adapter Design Pattern

• Converts from provided interface to the
required interface.
• A single Adapter interface can work with

many Adaptees.
• Easy to maintain.

@KatyAnton

Example 3: Implement a Single Sign-On

• Libraries / packages created by another team within same company
• Re-used by multiple applications
• Common practice in large companies

@KatyAnton

Façade Design Pattern

• Simplifies the interaction with a
complex sub-system
• Make easier to use a poorly

designed API
• It can hide away the details from

the client.
• Reduces dependencies on the

outside code.

@KatyAnton

Secure Software Starts from Design !

Wrapper
To expose only required

functionality and hide unwanted
behaviour.

Adapter Pattern
To convert from the required

interface to provided interface

Façade Pattern
To simplify the interaction with

a complex sub-system.

How often?

@KatyAnton

Rick Rescorla

• United States Army office of British origin
• Born in Hayle, Cornwall
• Director of Security for Morgan Stanley at WTC

Security Controls Recap

@KatyAnton

Security Controls Recap

Application Server

Operating System

Software Application Param

Queries

Param

Queries

Key
 Management

Secure

Date

Encode
output

TLS

Validate
Input

TLS

TLS

Log

Exceptions

Encode output

Mod
Mod

Encaps

Mod
Mod

Mod

Library

Mod
ModHarden

XML Parser

XML

@KatyAnton

Get the Basics Right

“Most cyber threats are not that sophisticate … actors will use
simple tools and techniques if they work.
Implementing basic cyber security practices remains the best way
to tackle the majority of cyber threats.“

Source: Director of GCHQ
CyberUK18

@KatyAnton

OWASP Snakes and Ladders

https://www.owasp.org/images/0/08/OWASP-SnakesAndLadders-WebApplications-EN.pdf

https://www.owasp.org/images/0/08/OWASP-SnakesAndLadders-WebApplications-EN.pdf

Thank you very much

@KatyAnton

